Genetically distinct leukemic stem cells in human CD34− acute myeloid leukemia are arrested at a hemopoietic precursor-like stage
نویسندگان
چکیده
Our understanding of the perturbation of normal cellular differentiation hierarchies to create tumor-propagating stem cell populations is incomplete. In human acute myeloid leukemia (AML), current models suggest transformation creates leukemic stem cell (LSC) populations arrested at a progenitor-like stage expressing cell surface CD34. We show that in ∼25% of AML, with a distinct genetic mutation pattern where >98% of cells are CD34(-), there are multiple, nonhierarchically arranged CD34(+) and CD34(-) LSC populations. Within CD34(-) and CD34(+) LSC-containing populations, LSC frequencies are similar; there are shared clonal structures and near-identical transcriptional signatures. CD34(-) LSCs have disordered global transcription profiles, but these profiles are enriched for transcriptional signatures of normal CD34(-) mature granulocyte-macrophage precursors, downstream of progenitors. But unlike mature precursors, LSCs express multiple normal stem cell transcriptional regulators previously implicated in LSC function. This suggests a new refined model of the relationship between LSCs and normal hemopoiesis in which the nature of genetic/epigenetic changes determines the disordered transcriptional program, resulting in LSC differentiation arrest at stages that are most like either progenitor or precursor stages of hemopoiesis.
منابع مشابه
Characterization of antigens on acute lymphoblastic leukemias.
Detectable differences in surface membrane characteristics of normal lymphocyte populations have facilitated the classification of leukemic cells according to cell origin and Stage of differentiation. Recent reports show that distinct leukemic cell populations do not only express markers found on normal cell populations. Using specific antisera new antigenic determinants on cells of common acut...
متن کاملHuman acute myeloid leukemia CD34+CD38- stem cells are susceptible to allorecognition and lysis by single KIR-expressing natural killer cells.
The concept of tumor immunosurveillance has raised prospects for natural killer cell-based immunotherapy of human cancer. The cure of acute myeloid leukemia may depend on eradication of leukemic stem cells, the self-renewing component of leukemia. Whether natural killer cells can recognize and lyse leukemic stem cells is not known. To develop strategies that effectively target acute myeloid leu...
متن کاملEffective Dendritic Cell-based Immunotherapeutic Vaccines for Acute Myeloid Leukemia (AML)
Acute myeloid leukemia (AML) is a type of poor prognosis hematological malignancies characterized by heterogeneous clonal expansion of myeloid progenitors. Leukemic stem cells are thought to form the majority of a cell population in minimal residual diseases (MRDs) which are resistant to current chemotherapeutic regimens and mediate disease relapse. Current therapeutic vaccine strategies have d...
متن کاملCharacterization of Thy-1 (CDw90) expression in CD34+ acute leukemia.
Thy-1 (CDw90) is a phosphatidylinositol-anchored cell surface molecule which, when coexpressed with CD34 in normal human bone marrow, identifies a population of immature cells that includes putative hematopoietic stem cells. To date, the characterization of Thy-1 expression has been confined largely to normal tissues and cell lines. In this study, we evaluated the frequency and intensity of Thy...
متن کاملEvidence for malignant transformation in acute myeloid leukemia at the level of early hematopoietic stem cells by cytogenetic analysis of CD34+ subpopulations.
Acute myeloid leukemia (AML) is a heterogenous disease according to morphology, immunophenotype, and genetics. The retained capacity of differentiation is the basis for the phenotypic classification of the bulk population of leukemic blasts and the identification of distinct subpopulations. Within the hierarchy of hematopoietic development and differentiation it is still unknown at which stage ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 213 شماره
صفحات -
تاریخ انتشار 2016